BE 460 Bioreactor Design and Analysis

Spring 2008 CRN 88908

MWF 13:30 - 14:20; Ag Sci 220

Course Objective

To provide the basic principles of reactor design for bioprocess, biotech, and biomedical applications. This course emphasizes on two interconnected topics: (1) bioreaction kinetics and (2) bioreactor engineering. Upon completion of the course you are expected to:

- comprehend the state of the arts in **bioreactor technology** and its broad range of applications
- develop mathematical descriptions of **reaction kinetics** in enzymatic and cellular systems and their relationships with bioreactor design
- grasp the linkage between **biological phenomena and engineering design** for effective bioreactor operations
- apply basic principles of **mass and energy conservation** to analyze bioreactor systems
- identify the major **engineering parameters** that characterizes the performance of bioreactors and techniques to **measure and control these parameters**

Catalog Description

BE 460 Bioreactor Design and Analysis (3) Application of mass/energy balances and reaction kinetics for the design and analysis of bioreactors for microbial, plant, and animal cell cultures. Pre: 373, CEE 320 or ME 322; or consent. DP

Instructor

Dr. Wei Wen Su Ag Sci 4150, Tel. 956-3531 e-mail: wsu@hawaii.edu

Office Hour: by appointment (call or e-mail first)

TA

Mr. Kimo Phan: khuyen@hawaii.edu; x69917

Text

- Bioprocess Engineering Principles, by Pauline M. Doran, Academic Press, 1995
- Lecture notes

Course Grade

Grades for the course will be assigned on the following basis:

Two exams30% eachDesign project*20%Homework15%Attendance5%

All assignments MUST be turned in by the due date. Failure to comply will result in no grade being assigned.

^{*} design and analysis of polymerase chain reaction (PCR) reactor

Tentative Lecture Schedule

No. of lectures	Topic	References	
1	Overview	Chap 1; notes	
2	The "bio" in bioreactor design: Intro to microbiology, biochemistry, and molecular biology pertinent to bioreactor design	notes	
2	Chemical kinetics: molecularity; elementary vs. non-elementary reactions; Derivation of rate equations; Arrhenius law	Chap 11; notes	
1	Enzymes: Introduction	Chap 11; notes	
1	Enzymes: Immobilization technology & applications	Chap 11; notes	
1	Utilization of enzymes in pretreatment of lignocellulosic biomass for biofuel production	notes	
3	Enzyme kinetics: Quasi-steady state vs. rapid equilibrium approaches; Evaluation of kinetic constants; Inhibition of enzymatic reactions	Chap 11; notes	
2	Tempdependency in enzymatic reactions; Enzyme deactivation	Chap 11; notes	
1	Polymerase chain reaction	notes	
2	Growth kinetics, kinetics of substrate consumption and product formation	Chap 4,11; notes	
4	Cellular metabolism, energetics, stoichiometry, metabolic flux analysis	Chap 4,11; notes	
2	Basic bioreactor concepts: Ideal reactor analysis - integrating kinetics with mass & energy balances; model simulation	Chap 4,13; notes	
2	Unsteady state mass & energy balances – analysis of bioreactor dynamics	Chap 6; notes	
2	Exam I	01 0 .	
2	Mass transfer in bioreactors Immobilized bioreactors: mass transfer and kinetics	Chap 9; notes Chap 12; notes	
1	Heat transfer	Chap 8; notes	
2	Bioreactor sterilization	Chap 13; notes	
2	Instrumentation and control	Chap 13; notes	
1	Bioreactor dissolved O ₂ & T control: a case study	Chap 13; notes	
2	Mixing in bioreactors: mixing time and residence time distribution (RTD)	Chap 7; notes	
1	Gas-hold-up; power input calculation	Chap 7; notes	
2	Scale up	Chap 7; notes	
1	Review		

Course Learning Objectives

Uı	Upon completing this course, the student will be able to:		BE Outcome‡
i.	apply principles of mass/energy conservation and force balance to derive differential equations for a system	М	a)
ii.	understand the relationship between free energy, entropy, internal energy, and enthalpy	M	c)
iii.	use models of a process to identify the most salient characteristics governing system behavior	M	e)
iv.	understand fundamentals of cell structure and metabolism	D	b)
v.	solve basic problems in kinetics and kinematics	M	d)
vi.	recognize and define the problem to be solved	D	d)
vii.	write structured code to simulate a system	D	f)
viii.	objectively discuss the problem and the merits of possible solutions	D	g)
ix.	formulate an effective strategy for action	D	g)
х.	organize the content of a document according to the informational needs and technical background of audience	M	i)
xi.	communicate facts supported by evidence and/or sufficiently detailed explanation	D	i)
xii.	submit written work without errors in spelling, punctuation, and usage	M	i)
xiii.	understand the social, cultural, political, and environmental impacts of biological engineering practice	D	j)
xiv.	independently research scientific literature and engineering references	D	k)
xv.	understand the role Biological Engineers face in addressing societal challenges	D	l)

[†] I = Introductory; D = Developmental; M = Mastery.

- a) The graduate has the ability to solve problems involving differential equations.
- b) The graduate has the ability to solve physics problems involving mechanics, electromagnetics, and optics; chemistry problems involving inorganic and organic chemistry; problems involving general and micro-biology.
- c) The graduate has the ability to solve engineering problems related to statics, dynamics, fluid mechanics, and thermodynamics.
- d) The graduate has the ability to design a system, component, or process in which biology plays a significant role.
- e) The graduate has the ability to design and conduct experiments to gather information for engineering designs.
- f) The graduate has the ability to use modern engineering techniques, skills, and tools to define, formulate, and solve engineering problems.
- g) The graduate has the ability to function effectively on multi-disciplinary teams.

[‡] UH Biological Engineering Course Outcomes:

- h) The graduate has the ability to identify professional and ethical responsibilities when practicing engineering.
- i) The graduate has the ability to communicate effectively in large and small groups.
- j) The graduate has the background to understand the impact of engineering solutions on the surrounding context.
- k) The graduate recognizes the need to engage in life-long learning through participation in professional conferences, workshops, and courses, and by reading and writing in the relevant literature.
- l) The graduate has the ability to intelligently discuss contemporary issues.